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Abstract

This short communication concerns a class of Nash games in which the participants
share some of the decision variables. An averaging method is developed in order to
transform these games into standard Nash games. This technique is successfully applied
to solve an example multileader, single-follower game described by Pang and Fukushima.

1 Introduction

A Nash game [7, 8] is a noncooperative game generally played by n individuals who each
select a strategy to maximize their own profit given the strategies chosen by the other
participants. A Nash equilibrium is a set of strategies where each participant has chosen
a strategy that maximizes the player’s individual profit. That is, no player can make a
unilateral change in strategy that results in larger profit. For a two-player Nash game,
(x1,∗, x2,∗) is a Nash equilibrium if and only if

x1,∗ ∈ arg maxx1∈X1
f1(x1, x2,∗)

x2,∗ ∈ arg maxx2∈X2
f2(x1,∗, x2),

where f1 and f2 are the profit functions for the first and second player and X1 and X2 are
polyhedral sets restricting the strategies that can be chosen. If f1(·, x2) is a concave function
for every x2 ∈ X2 and if f2(x1, ·) is a concave function for every x1 ∈ X1, then a standard
technique is to write down the first-order optimality conditions for each optimization prob-
lem and put them all together to produce the variational inequality

X1 3 x1 ⊥ −∇x1f1(x1, x2)
X2 3 x2 ⊥ −∇x2f2(x1, x2),

where the notation from [2] has been used to describe the polyhedrally-constrained varia-
tional inequality. Any solution to this variational inequality is a Nash equilibrium for the
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original game and vice versa because of the concavity assumption made for the objective
functions and the polyhedrality of the constraint set. If the concavity assumption is not
satisfied, an attempt can still be made to solve the variational inequality, but the solution
is only a Nash critical point.

This short communication concerns a modified version of the standard Nash game in
which an additional set of shared decision variables are incorporated into the optimization
problems. Such games are encountered when solving multileader, single-follower games
[10] in which each leader solves an optimization problem where the constraints model the
response of the single follower. If the leaders maximize their objective function subject to
how they think the follower will respond, then the problem is a standard Nash game because
the perception of the response can be different for each leader. If the follower must make
a single shared decision, however, the problem is no longer a standard Nash game because
the follower’s decision is then shared by all of the leaders.

In particular, (x1,∗, x2,∗, y∗) is a Nash equilibrium for a two-player Nash game with
shared decision variables if and only if

(x1,∗, y∗) ∈ arg maxx1∈X1,y∈Y f1(x1, x2,∗, y)
(x2,∗, y∗) ∈ arg maxx2∈X2,y∈Y f2(x1,∗, x2, y),

(1)

where Y is a polyhedral set restricting the possible values for the shared decision variables.
As with standard Nash games, if f1(·, x2, ·) is a concave function for every x2 ∈ X2 and if
f2(x1, ·, ·) is a concave function for every x1 ∈ X1, then the first-order optimality condi-
tions for each optimization problem can be written to produce the nonsquare variational
inequality

X1 3 x1 ⊥ −∇x1f1(x1, x2, y)
X2 3 x2 ⊥ −∇x2f2(x1, x2, y)
Y 3 y ⊥ −∇yf1(x1, x2, y)
Y 3 y ⊥ −∇yf2(x1, x2, y).

This variational inequality is nonsquare because the shared decision variables appear into
two different variational relationships. An alternative formulation allows each player to
make independent decisions y1 and y2 and adds a constraint to the problem that y1 = y2.
Such a modification still results in a nonsquare variational inequality because this problem
has more constraints than decision variables. These nonsquare systems are difficult to solve
for algorithms, such as PATH [1, 3], that were designed for square systems.

Section 2 discusses an averaging method for Nash games with shared decision variables
that leads to a square variational inequality when the first-order optimality conditions are
constructed. Section 3 then demonstrates the effectiveness of the averaging technique on
the multileader, single-follower game described in [10].

2 Averaging Method

A square variational inequality can be produced for the Nash game with shared decision
variables by letting all the leaders make their own decision for the shared variables and
averaging these decisions in the objective function. The averaged Nash game is then to find
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(x1,∗, x2,∗, y1,∗, y2,∗) such that

(x1,∗, y1,∗) ∈ arg maxx1∈X1,y1∈Y f1

(
x1, x2,∗, y1+y2,∗

2

)
(x2,∗, y2,∗) ∈ arg maxx2∈X2,y2∈Y f2

(
x1,∗, x2, y1,∗+y2

2

)
.

(2)

If the objective function for each player is a concave function for every choice of the fixed
variables, then solutions to the averaged game can be characterized by the square varia-
tional inequality constructed from the first-order optimality conditions for each optimization
problem

X1 3 x1 ⊥ −∇x1f1

(
x1, x2, y1+y2

2

)
X2 3 x2 ⊥ −∇x2f2

(
x1, x2, y1+y2

2

)
Y 3 y1 ⊥ −∇y1f1

(
x1, x2, y1+y2

2

)
Y 3 y2 ⊥ −∇y2f2

(
x1, x2, y1+y2

2

)
.

Any convex combination of the shared variables can be used in this averaging procedure.

Theorem 2.1 If Y is a convex set, then the following hold:

1. If (x1,∗, x2,∗, y∗) solves (1), then (x1,∗, x2,∗, y∗, y∗) solves (2).

2. If (x1,∗, x2,∗, y1,∗, y2,∗) solves (2), then (x1,∗, x2,∗, y1,∗+y2,∗

2 ) solves (1).

Proof: Let (x1,∗, x2,∗, y∗) solve (1) and assume that (x1,∗, x2,∗, y∗, y∗) does not solve (2).
The latter statement means that one of the players can increase their objective function value
by switching to a different strategy (x̄1, x2,∗, ȳ, y∗). However, (x̄1, x2,∗, ȳ+y∗

2 ) is feasible for
(1) because Y is a convex set and contradicts the fact that (x1,∗, x2,∗, y∗) solves (1) because
the objective function value for the first player at the new point increases. Therefore, the
assumption was false and (x1,∗, x2,∗, y∗, y∗) solves (2).

What remains to be shown is that if (x1,∗, x2,∗, y1,∗, y2,∗) is a solution to (2) then
(x1,∗, x2,∗, y1,∗+y2,∗

2 ) is a solution to (1). However, if (x1,∗, x2,∗, y1,∗, y2,∗) is a solution to
(2), then (x1,∗, x2,∗, y1,∗+y2,∗

2 , y1,∗+y2,∗

2 ) is also a solution to (2) since the new point is fea-
sible because Y is a convex set and the objective function values are the same. Clearly,
(x1,∗, x2,∗, y1,∗+y2,∗

2 ) then solves (1). �

Therefore, the averaged game and the game with shared decision variables are equivalent
under a suitable mapping. The costs paid are that many new variables can be introduced
into the averaged game and the averaged game can have an infinite number of solutions
obtained by selecting different partitions for the shared decision variables.

Note that while the solution computed for the original game is correct, any Lagrange
multipliers added when the Karush-Kuhn-Tucker conditions for the variational inequality
are applied to produce an equivalent nonlinear complementarity problem may need to be
recalculated for the averaged solution. The correct Lagrange multipliers can be found, for
example, by calculating an active set and solving an auxiliary optimization problem.

This result can be extended to generalized Nash games with shared decision variables.
Each optimization problem in a generalized Nash game can include constraints that depend
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on the strategies selected by all of the players [9]. Formally, the generalized Nash game
with shared decision variables is to find (x1,∗, x2,∗, y∗) such that

(x1,∗, y∗) ∈ arg maxx1∈X1,y∈Y f1(x1, x2,∗, y)
subject to g1(x1, x2,∗, y) ≥ 0

(x2,∗, y∗) ∈ arg maxx2∈X2,y∈Y f2(x1,∗, x2, y)
subject to g2(x1,∗, x2, y) ≥ 0,

where X1, X2, and Y are polyhedral sets and f1, f2, g1, and g2 are concave functions. The
averaged problem is to find (x1,∗, x2,∗, y1,∗, y2,∗) such that

(x1,∗, y1,∗) ∈ arg maxx1∈X1,y1∈Y f1(x1, x2,∗, y1+y2,∗

2 )
subject to g1(x1, x2,∗, y1+y2,∗

2 ) ≥ 0

(x2,∗, y2,∗) ∈ arg maxx2∈X2,y2∈Y f2(x1,∗, x2, y1,∗+y2

2 )
subject to g2(x1,∗, x2, y1,∗+y2

2 ) ≥ 0

The same averaging argument used in the proof of Theorem 2.1 is valid for these generalized
Nash games with shared decision variables because if y1,∗ and y2,∗ are solutions to the
averaged game, then ȳ1 = ȳ2 = y1,∗+y2,∗

2 is also a solution to the averaged game, since the
new point is feasible and has the same objective function value.

Furthermore, the averaging method can be extended to games with more than two
players by averaging the shared decisions made by all of the players in the game.

3 Numerical Test

The multileader, single-follower game posed in [10] was used to test the effect of the averag-
ing method when computing an equilibrium to a game with shared decision variables. This
game models an electric power market with endogenous arbitragers. The problem consists
of four entities: the power producers that generate power to maximize their profits, the in-
dependent service operator that moves the generated power around the electricity network
to maximize revenue, an arbitrager that buys and sells power in an attempt to make a profit
from the sales, and the transmission market that sets the cost of transmitting power along
the arcs in the electricity network by using a market clearing condition. The arbitrager is
the single follower in the game and responds to the decisions made by the producers. The
arbitrager is allowed to make only a single shared decision because this decision is used in
the market clearing condition.

The exact descriptions of the optimization problems for each player can be found in
Section 5.2 of [10] and are not repeated here. The optimization problem solved by each
power producer is nonconvex because of the presence of a complementarity condition in
the constraints, while the all of the other agents solve linear programs. The averaging
method still works for this game by restricting the arbitrager’s decision to the nonnegative
orthant and using the averaged value in the complementarity conditions. The complemen-
tarity condition in the constraints for each of the producers can cause problems because of
constraint qualification violations [11]. Therefore, the producer problems are reformulated
by using the technique in [6] for sequential quadratic programming methods, and the first-
order optimality conditions are constructed for the reformulated problem. Because of the
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nonconvexity of the constraints, a solution to the variational inequality may be only a Nash
critical point for the original game.

Two models for this electric power market model were implemented in the AMPL mod-
eling language [5] to test the effect of the averaging method when computing a Nash
critical point for a game with shared decision variables. The first model implements
the original nonsquare formulation; the second model implements the square formulation
obtained by using the averaging method. Both models are available for download from
http://www.mcs.anl.gov/~tmunson/models. The PATH algorithm [1, 3] was used in an
attempt to solve the resulting complementarity problems. The default settings were used
for this algorithm in all of the tests. The AMPL presolve was also turned off because it
can sometimes produce a nonsquare complementarity problem from a square system. A
starting point consisting of the zero vector for all quantities and multipliers was used for
testing.

As expected, the nonsquare complementarity problem for the original formulation is
very difficult to solve. PATH gives up on solving this problem and admits failure after 187
major iterations and three algorithm restarts [4]. The best point found had a residual of
1.5, which is far from a solution to the problem. The multipliers on the complementarity
constraints did not appear to diverge; the maximum element in the best point found was
under 5,000. Rather, the reason for failure appears to be that the problem is not square.

For the averaged model, however, PATH converged to a very accurate solution in 8 major
iterations. The residual at the solution reported was 1.5× 10−12 and the multipliers on the
complementarity constraints were all less than 100. The Newton direction was accepted at
every iteration with a step size of one, and fast convergence was observed. At the solution
reported, y1,∗ and y2,∗ were different, but the averaged value is a solution to the original
game.

4 Conclusion

The averaging method is a useful technique for solving Nash games with shared decision
variables because it produces a square variational inequality when the first-order optimality
conditions are taken for each of the optimization problems solved by the participants. While
the models generated by the averaging method are more computationally tractable, the cost
paid is that many new variables are potentially introduced, therefore impacting the sparsity
of the Jacobian and solution time. Furthermore, some algorithms may have difficulty solving
the averaged game because it can have an infinite number of solutions. The PATH algorithm,
however, seems to have no difficulty solving the averaged game.
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